首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2982篇
  免费   266篇
  国内免费   287篇
化学   1176篇
晶体学   35篇
力学   588篇
综合类   10篇
数学   404篇
物理学   1322篇
  2024年   4篇
  2023年   47篇
  2022年   63篇
  2021年   76篇
  2020年   133篇
  2019年   68篇
  2018年   67篇
  2017年   131篇
  2016年   161篇
  2015年   116篇
  2014年   156篇
  2013年   218篇
  2012年   148篇
  2011年   256篇
  2010年   194篇
  2009年   203篇
  2008年   189篇
  2007年   200篇
  2006年   176篇
  2005年   123篇
  2004年   110篇
  2003年   111篇
  2002年   106篇
  2001年   86篇
  2000年   47篇
  1999年   62篇
  1998年   60篇
  1997年   29篇
  1996年   29篇
  1995年   29篇
  1994年   18篇
  1993年   28篇
  1992年   22篇
  1991年   18篇
  1990年   9篇
  1989年   6篇
  1988年   9篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
  1957年   1篇
排序方式: 共有3535条查询结果,搜索用时 15 毫秒
101.
Nanocomposites from polyamide 11 and dried cellulose nanofibers (CNs), 16–30 nm in thickness and 50–400 nm in length, were prepared via direct melt mixing and their micro- and nano-mechanical properties were studied. (PF) QNM (Quantitative Nanomechanical Mapping) method was used to map nanomechanical properties at the surface of polyamide 11 and nanocomposites. This new AFM method emphasized both the increased modulus in nanocomposites as compared to the matrix and the microstructure on different levels in polyamide 11 and its nanocomposites. PF QNM showed that their crystalline structure consists of bundles of lamellar stacks, 200–350 nm in width and 20–40 nm wide lamellar stacks. Moreover, PF QNM study emphasized higher structural order in nanocomposites with 3 and 5 wt.% CNs and lower in the nanocomposite with 8 wt.% CNs as compared to the reference. These observations were verified and are consistent with both crystallinity values determined by DSC and micro-mechanical test results. The oriented bundles of lamellar stacks, observed by PF QNM, could be considered as the main blocks determining high mechanical properties for the studied nanomaterials.  相似文献   
102.
Microstructure, surface topography, thermal and mechanical features of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) electrospun non-woven mats were modified, modulated and tailored through blending with different polyethylene oxide (PEO) amounts (20, 30 and 50% wt/wt). The optimal parameters of the soaking protocol for the selective removal of the sacrificial polymer were accurately identified by means of scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Fourier transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy, simultaneous thermogravimetric and differential analyses (TG-DTA) and differential scanning calorimetry (DSC). The complete PEO removal after soaking in H2O for 7 days with daily refreshment was confirmed. The resulting samples were only comprised of PHBV fibers characterized by a remarkable decrease of the average size with respect to the respective blends. Their surface topography was corrugated and rough and presented nodules, pits, nanopores, shallow and elongated nanostructured indents/grooves along the fiber axis. A remarkable reduction (>75%) of the tensile modulus (E) of electrospun PHBV mats (15–20 MPa) was obtained, maintaining comparable elongation at break (εmax) values (20–30%).  相似文献   
103.
Polymers possess a very large inherent capacity for property modifications. The bridge between structure or morphology and mechanical properties is created by the micromechanical processes of deformation and fracture, the “micromechanics.” Developments mainly in electron microscopy (EM) (scanning, transmission, and high-voltage electron microscopy) and scanning force microscopy (SFM) opened up a wide range of experiments previously impossible, including the in situ study of micromechanical processes. These new techniques are reviewed and used to study micromechanical properties of amorphous and semi-crystalline polymers and several toughened polymers. On the basis of the detailed knowledge of micromechanical mechanisms, a new method of polymer modification becomes a realistic possibility, a method of micromechanical construction of new polymeric systems.  相似文献   
104.
The purpose of the present work is to study the mixed mode fracture of a piezoelectric–piezomagnetic composite with two un-coaxial cracks parallel to the interface and each in a layer. Methods of generalized dislocation simulation, Green’s function, Cauchy singular integral equation and Lobatto–Chebyshev collocation are combined together to get the numerical results of mechanical strain energy release rate (MSERR). Three kinds of effects are revealed by parametric studies, i.e., the free-surface effect, the shielding effect and the interference effect, and they are used to interpret the characteristics of COD and MSERR curves. In addition, the effects of shear loading, magnetic loading and electric loading on MSERR are also disclosed, respectively, by varying the corresponding loading factor.  相似文献   
105.
The solid state postcure reaction mechanism of polyurethane elastomers (PU) synthesized using a relatively small excess (up to 10%) of isocyanate was studied. The postcure process succeeds especially with the assistance of atmospheric humidity and, its process velocity depends on PU sample thickness. The polymer network is consolidated mainly by the formation of a new urea group. The formation of allophanate, uretidinedione, and isocyanurate groups and possible reticulations by the intermediary amine groups formed, play only a secondary role in the studied conditions. Kinetic equations regarding the postcure evolution were followed by means of the changes in mechanical properties. The evolution of the process was correlated to different kinetic measurements regarding the elementary processes involved like the consumption of NCO groups, absorption of water from the atmospheric humidity, and desorption of CO2 resulted during the formation of urea group. The CO2 desorption appears to be the slowest dynamic process.  相似文献   
106.
107.
In order to obtain epoxy nanocomposites with excellent mechanical properties at cryogenic temperature, an efficient method to functionalize graphene nanoplatelets (GNPs) is proposed. Through a simple dip-coating procedure, the GNPs were first functionalized with deposition of polydopamine coating (PDA@GNPs). Then, using polydopamine as a bridge, the PDA@GNPs were modified with amine groups after polyetheramine T403 grafting (T403-PDA@GNPs). Fourier transform infrared spectroscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy analyses proved the successful functionalization of PDA and polyetheramine T403 on the surface of GNPs. Adding 0.1 wt% T403-PDA@GNPs significantly improved the cryogenic tensile strength and impact strength of the epoxy nanocomposites by 34.5% and 64.5%, which showed greater reinforcing effect than the pristine GNPs (12.6% and 19.1%) and PDA@GNPs (26.3% and 50.1%). The results of dynamic mechanical analysis and scanning electron microscopy observations indicated that the PDA and further polyetheramine T403 functionalization improved the interfacial interactions between GNPs and matrix, which ensured the much improved mechanical properties.  相似文献   
108.
Rigid polyurethane foams with up to 50 wt% of microcapsules from LDPE-EVA containing Rubitherm®RT27 were synthesized. The influence of microcapsules on the foams density, microstructure and mechanical resistance was studied. Cell size and strut and wall thicknesses were analyzed by SEM. The relationships between densities and foam microstructures with their Young's moduli and collapse stress were found by the Gibson and Ashby formulations and the Kerner equation for mechanical properties of composites. It was found a cell structure change from polyhedral closed-cells to spherical or amorphous open-cells. A good agreement between the experimental and theoretical data was observed but requiring a cell form factor. Thus, Fitting parameters confirmed the high trend of these microcapsules to be incorporated into the foam cell walls and the form factors depicted the abrupt change of cell morphology. Thus, these equations are suitable for predicting the mechanical properties of foams containing fillers of low mechanical resistance.  相似文献   
109.
The mechanical recyclability of the technical biopolymers polytrimethylene terephthalate (PTT), cellulose acetate butyrate (CAB), polybutylene succinate (PBS) and polyhydroxy alkanoate blend (PHBV/PBAT) was evaluated by assessing the effect of repeated polymer processing (extrusion without further compounding with virgin material or additives) on the material structure and mechanical properties. Reprocessing-induced hydrolytic degradation was found to be the prevalent aging mechanism of the investigated biopolymer grades. However, susceptibility to hydrolysis, and thus maintenance of the performance characteristics, differed strongly between the biopolymer types. To that effect, PTT and CAB especially exhibit a high potential for mechanical recycling. By taking advantage of appropriate additivation, the mechanical recyclability of PBS and PHBV/PBAT is also assumed to be high.  相似文献   
110.
The electrical conductivities of carbon-black-filled low-density polyethylene (LDPE), poly(methyl methacrylate) (PMMA), and poly(vinyl chloride)-vinyl acetate (PVC/ VAc) copolymer were measured as functions of carbon content and melt viscosity of the matrix at the temperatures at which the composites were prepared. Sharp breaks in the relationship between the carbon filler content and the conductivity of composites were observed in all specimens at some content of the carbon filler. The conductivity jumps as much as 10 orders of magnitude at the break point. This phenomenon has been known as the “percolation threshold”. The critical carbon content corresponding to the break point  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号